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PRESSURE EXCURSIONS IN TRANSIENT FILM 
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Abstract-The pressure excursions accompanying the transient film boiling which occurs when a large 
pool of saturated and stagnant liquid is suddenly exposed to a very hot solid sphere are analytically 
evaluated. Following simplifying assumptions, it is shown that quite large pressure excursions can result. 

Predictive equations for their amplitudes and frequencies of oscillation are presented. 

NOMENCLATURE 

parameter, AZ = P~~Rp~o ; 
constant, G = 2z~3r(2/3)/3; 
parameter, B = 6,/R; 

coefficient ; 
parameter, C = k(T,- 7&/P,& 

constant of integration; 
function; 
function of time; 
Bessel function; 
parameter, K = k(T,- T,)/p,#jA; 

vapor thermal conductivity; 
vapor mass per unit area in film; 
dimensionless vapor mass per unit area, 
m= Memos 

local pressure; 
pressure far from sphere; 
dimensionless film pressure, p = P/PO3 ; 
sphere radius ; 
radius; 
liquid saturation temperature; 
sphere temperature; 
time; 
liquid velocity; 
dimensionless variable, y = log,(p); 
dimensionless variable, z = 2m3”/3ct. 

Greek symbols 

% dimensionless parameter, 

a = Ck(r,- ~)/P”AI(RP/~~P~)“~; 

r, gamma function; 

6, film thickness; 

A, heat of vaporization; 

PI liquid density; 

P II 3 vapor density at ambient pressure; 
z, dimensionless time, z = At. 

Superscripts 

first ordinary time derivative; 
. . 
9 second ordinary time derivative. 

*Graduate student. 
TAssociate Professor. 

Subscripts 

m, exponent ; 
n, index ; 
0, initial value. 

INTRODUCTION 

WHEN a very hot solid of constant temperature is 
suddenly brought into contact with a large pool of 
stagnant and saturated liquid, heat flows from the solid 
into the liquid and causes the liquid to vaporize. Thus, 
an ever increasing amount of vapor forms a film 
between the solid and the liquid. Because the vapor is 
much less dense than is the liquid, the liquid must 
ultimately be displaced away from the solid to make 
room for the vapor. Before such a displacement can 
occur, there must be a pressure excursion in the vapor 
film to provide the accelerating force. Inasmuch as the 
proper operation of thermal equipment requires that 
transient effects in change-of-phase processes be under- 
stood for appropriate precautions and controls to be 
employed, detailed understanding of this physical situ- 
ation is believed to be pertinent to today’s technology. 

It appears, however, that no treatment directly 
applicable to the subject problem has been published. 
Most studies neglect the possibility of a pressure 
excursion in the film and its effect upon vapor density. 
Carslaw and Jaeger El], Hamill and Bankoff [2], Pitts 
et at. [3], and Limpiyakorn and Burmeister [4] con- 
sidered the effects of different geometries and tempera- 
ture dependent properties and found the square of the 
film thickness to vary linearly with time. But this result, 
generally expressible as 6* = 6a+ct, gives &t = 0) = 
c/2&, and shows that under initially stagnant conditions 
there must have been large accelerations and pressure 
excursions in the beginning. Studies accounting for 
pressure effects on unsteady change-of-phase processes 
are few. The influence of externally imposed pressure 
variations on quasi-steady film boiling was analytically 
studied by Burmeister and Schoenhals [S] for a vertical 

- plate and was experim~n~l1y studied by McCoy [6] 
5 for nucleate boiling on a horizontal wire. They both 

found an appreciable influence, but did not treat the 
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case where pressurization is caused by the transient 
vaporization itself. 

In the present work the amplitudes and frequencies 
of the pressure excursions and their effect upon the 
rate of vaporization and the vapor film thickness will 
be determined for representative conditions. It will be 
shown that pressure excursions can be extreme. 

PROBLEM FORMULATION 

As shown in Fig. 1, a sphere is immersed in a large 
pool of stagnant and saturated liquid with a very thin 
film of vapor initially separating the solid from the 
liquid. Suddenly, the sphere achieves a very high tem- 
perature which is thereafter maintained. Heat flows 
from the sphere into the liquid-vapor interface by 
conduction through the vapor, generating additional 
vapor. The pressure in the compressible film rises since 
the liquid is initially stationary, and the liquid accel- 
erates away from the sphere. Because of its inertia the 
liquid undergoes too large a displacement; the pressure 
in the film decreases below the ambient value, and the 
liquid then accelerates toward the sphere. As a result, 
film thickness and pressure have an oscillatory 
behavior. 

Liqufd pool 

FIG. 1. Physical configuration and 
coordinate system. 

A spherical geometry and a nonzero initial film 
thickness are considered to avoid the infinitely large 
pressure excursions which result from other geometries 
and the absence of an initial film. Gravitational body 
forces are neglected. It is assumed that the liquid and 
vapor are in ~uilibrium at the constant saturation 
temperature which corresponds to the initial pressure, 
neglecting the conductive heat flow into the liquid 
caused by the pressure dependence of saturation tem- 
perature which is expected to be of greater importance 
for large pressure excursions than for small ones. The 
vapor film is taken to be thin enough that its curvature 
can be neglected. Further, the vapor film is assumed 
to have a linear temperature distribution at all times; 
Rooney [7] accounted for the effect of pressure on the 
vapor’s temperature distribution and found only a 
slight inffuence. 

The describing one-dimensional equations in spheri- 
cal coordinates for the incompressible liquid are the 
continuity equation 

d(r2v)/dr = 0 (1) 
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and the momentum equation 

p(i?v/rlt f l/2&12,J?r) = - c?P/?r. (2) 

At the liquid-vapor interface conductive heat flow 
vaporizes liquid so that 

hi = k(T,-- r,)jSA 

where 

M = ~Q~P/P~ (3) 

which gives 

&I = CP/M. (4) 

Initially, 

S(r = 0) = so @a) 

P(t = 0) = P, (W 

v(r, t = 0) = 0. (W 

Equation (1) shows that 

Y%! = f(t)* (6) 

Substitution of this result into equation (2) and inte- 
gration from I = R + 6 to r = c/? gives 

(P- Pm)/p = f/(R+d) - 1/2fz/(R +6j4. (7) 

At the interface continuity requires that 

ni! = p(B- 0). (8) 

Substitution of equations (3) and (6) into equation (8), 
upon rearrangement and use of equation (4), gives 

~/(~+~)z 

= P, C(1 - pv P/~P~~/M~~ - (MP~/~~ P’)P. (9) 

Taking the time derivative of equation (9) gives 

f/(R + 6)’ - 2&(R + S)3 = 

-(P,C/p,)(l-p,P/pP,)M-2il;l 
- (CIMP 
-(P,/pJ(P-2Pti+MP-2P-2P-3PPM). (10) 

Upon substituting equations (3), (4), (7), and (9) into 
equation (10) and rearranging into a dimensionless 
form it is found that 

d2p/dr2 +cr(l +pPu/p)pm-Z dp~d~-2~-‘(d~id7)’ 

+&p- l)m-’ -i-aZ(l -pp,,;p)m-4p3 

-~C~2(~-pp”/p~(~~5+~5PP”/p~~-3pZ 

- a(3 - w,/p)m-’ dpldz 
+ 1~5mp-2(dp/dr)2] = 0. (11) 

Inasmuch as attention is focused on initially thin films, 
the parameter B is quite small and the terms for which 
it is a coefficient can be neglected. Also, p,/p cc 1 so 
that equations (11) and (4) can be finally expressed in 
dimensionless form as 

d2p~dz2+Lypn-2pdp~d~-2p-‘(dp~dz)2 
+p*(p- l)m-’ +ff2m-4p3 = 0 

and 

dmidz = upjm. 

(W 

(13) 
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Initial conditions are Small excursions 

p(r = 0) = 1 = m(r = 0). (14) 

Equation (8) with the stipulation that the liquid is 
initially stagnant gives 

&I = pi;. 

Use of equation (3) in this relation shows that 

hi = (pP,/p”)(P-‘M-MP-2P). 

The small excursions that would be expected when 
a is small give small values of y so that 1 -eey hi y, 
allowing equations (17)-(19) to be linearized to 

z2 d2y/dz2 + (z/3) dy/dz + z*y = - 419 

Y(Z0) = 0 
dy(z,)/dz = CI 

But equation (4) allows this to be simplified to 

P = CP( 1 - p” P/pP&w 

whose solution is given by Murphy [S] as 

Y = CcIJ-1,3(z) +41,3(m’3 
eaz”‘3~-~,~(z)Iog,(z) +F(z) (20) 

where 
which in dimensionless terms can be written as a = 22’3r(2/3)/3 

dp(t = O),‘dt = a(1 -pJp). 

Again because pulp cc 1, 

dp(z = O)/dz = CL 

The dimensionless form of equation (3) gives 

(15) 

Equations (12)-(15) must be solved to determine the 
dimensionless film pressure (p), thickness (S/S,), and 
mass per unit area (m). Unfortunately, equation (12) 
is markedly nonlinear so that recourse to numerical 
methods is unavoidable for the general solutions 
sought. 

bz, = (n + 5/6)I-(2/3)/[( - 4)“(n f 1) 
x (12n+7n+4)n!I-(n+5/3)]. 

This linearized solution shows the general nature of 
the results, but its complexity is great enough that it 
is advantageous to examine the limiting case of GI -+ 0. 
For such a case z is very large with, according to 
Abramowitz [9], 

lim J,(z) = (2/7cz)‘12cos(z-rt/4-nnn/2) 
T.+m 

and 

However, a transformation enables the magnitudes 
of the pressure excursions to be analytically deter- 
mined for some limiting cases. Let z = 2m3/2/3ct and 
Y = log,@). Then equation (12) becomes 

with 

lim Piog,(z) = 0 for m < 0 
I-a’ 

zZd2y/dzZ+(z/3)d~~/dz+z2(1-e-Y)= -4/9 (17) 
as well. The solution for very small a can, therefore, 
be approximated as 

while equations (14) and (15) become 
y = (c3sinz+cqcosz)z-116. 

Y(zo) = 0 (18) 

dy(z,,)/dz = c1 (19) 

where z. = 213~. Equation (17) has only one nonlinear 
term which can easily be linearized to obtain approxi- 
mate solutions. This advantage was gained at the 
sacrifice of eliminating time from equation (12), how- 
ever. While expression of dimensionless pressure in 
terms of dimensionless vapor mass per unit area can 
be accurately accomplished and the maximum pressure 
determined, temporal behavior is stilI best obtained 
from equation (12) by numerical means. 

Consideration of the initial conditions then gives 

y = CX(~IXZ/~)-“~ sin(z- 2/3ar) (21) 
which has 

Ymax = u 
at 

z x 2/3u+~/2 

from which it follows that 

P max z t+a 

at 

SOLUTIONS 

The importance of the parameter 6! is displayed in 
equation (15) where it is seen to act as a forcing function, 
causing the film pressure’s dimensionless time deriva- 
tive to depart from zero and causing pressure to 
undergo a subsequent excursion. With equation (13) 
as a guide, it is realized that cz can be interpreted as 
the initial djmensionl~s rate of vapori~tion. This 
understanding suggests that small pressure excursions 
would be associated with small vaporization rates or 
small M, and that large pressure excursion would be 
associated with large vaporization rates or large M. 

m x: (1+37cor/4)2’3. (22) 

The pressure excursions in this limiting case are small 
enough that the vapor mass per unit area increase 
specified by equation (13) is essentially unaffected, 
giving 

dm/dr z u/m 

so that 

mz x l+Zfft. (231 

Equations (22) and (23) show that the maximum 
pressure excursion occurs at 

Z Z Z/2. (24) 

n=O 

lim F(z) = 0 
z+* 
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Further, equation (23) substituted into equation (21) 
shows pressure’s temporal behavior at large times to 
be the lightly damped oscillation 

p = 1 -t-x(1 +2a~)~‘~~sin(f~~) 

where w = 2[(1+ .ZW)~~‘- 1]/30(r is a dimensionless 
frequency. Accordingly. at very small times 

f!> = 1 (25) 

while at large times the oscillation’s dimensionless fre- 
quency and amplitude gradually decrease as u = 
(128/8L~r)‘~~ and ~/(2rx~)“~, respectively. 

Equation (16), together with the realization that m 
is littleaffected by pressure excursions when SL is small, 
shows that the ratio of film thicknesses with and with- 
out pressurization has extreme values given by 

6 pressvrcl ‘ii 110 prrssurc =Z l&cl. (26) 

Thus, if there is to be less than a 10 per cent influence 
of pressure excursions upon film thickness, it is neces- 
sary that a < 0.1. 

Large excursiow 
The large pressure excursions that would be expected 

when CI is large differ in some important ways from 
the small pressure excursions. The general qualitative 
behavior deduced previously from a linearized sofution 
is correct for large z only at large times after the 
excursions have been greatly damped. At small times 
pressure and !: would be very large so that 1 -em” x 1 
in equation (17). Thus the limiting case of z --t 0 in the 
linearized solution, equation (20), gives an incorrect 
result for F(Z). 

Focusing on the very first excursion for cc + :X and 
with the idea that y is large gives equations (17)~( 19) as 

Z’ d2y/dz2 + (~13) dy/dz = - 4/9 - z2 

with 
J(Q) = 0 

dq’(+)/dz = a 

whose solution is 

Y = cg + c6 $3 + (2,‘3) log&) - 3z2/8. 

Consideration of the initial conditions gives 

J = f/3a2 + (9j32~r~)‘:~~“~ + (2/3) log,(z) - 3z2/8 

which, again, is applicable only to the very first 
excursion. In the limiting case of 0: + EG. this gives 

at 
J!max = - l/3 +log,(2a2)“3 

2 = (8/9)‘:3 

from which it follows that 

at 
P mar 

= (2/e)l:3z2:3 = 0.906~2’3 

YIE = 71$3,2;3 

Inasmuch as a very smafl time has elapsed, the liquid 
has not displaced appreciably and this first pressure 
excursion occurs at nearly constant film thickness. 

Equations (13) and (16) taken together then give 

dmjdr = z. 
Thus. 

m= I+rt 

and the time at which the pressure reaches its first 
maximum is 

.T = (2/a)‘i3. (27) 

The general case was solved by a numerical method 
applied to equation (12). All calculations were executed 
on an H635 digital computer, using the MIMIC 
program [lo]. The numerical solutions were run until 
the film pressure had undergone several cycles of 
oscillation and had exhibited behavior which was pre- 
dictable by the analytical solution for small excursions. 

DISCUSSION 

The results of the calculations for maximum film 
pressure are shown in Fig. 2. There it is seen that the 
limiting solutions for large and small values of the 
parameter a are in good agr~m~t with the complete 
numerical solution. It must be remembered, however, 

cl 

FIG. 2. Dimensionless maximum pressure vs the dimension- 
less parameter a. 

that these solutions neglect liquid compressibility and 
the dependence of saturation temperature upon press- 
ure. As a consequence the maximum pressures found 
in this study must be regarded as upper bounds, 
particularly when CI is large. It must also be remem- 
bered that there is a lower limit on the initial film 
thickness which depends upon such factors as geometry, 
fluid properties, and the specific physical situation 
encountered--the film does not begin with a zero initial 
thickness. 

To illustrate the application of these results, consider 
a 500C sphere of 0.3 cm radius suddenly immersed in 
a IOOC pool of saturated water with an initial vapor 
film thickness of 3 x 10m3 cm. Under these conditions 
z = @6 and A = 3.5 x 104s-‘. From Fig. 2 the pre- 
dicted maximum pressure in the vapor film is l.Satm, 
representing a maximum pressure excursion of l/2 atm. 
This maximum pressure would occur after 45 x 10m6 s, 
according to equation (24),and pressure would oscillate 
with a period of 180 x lo-’ s, according to equation 
(25). It can be shown in a manner paralleling the 
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earlier developments of this study that pressure varies 
with distance from the sphere as 

i-P(r) - U/P@) -paI = R/r. 

Therefore, a pressure transducer located 2 cm from the 
sphere would indicate a maximum pressure excursion 
of only l/l5 atm which is substantially smaller than in 
the vapor film. While the present study pertains to a 
saturated liquid and a spherical geometry, the numeri- 
cal results are still in qualitative agreement with the 
experimental observation of Board et csl. [ll] for a 
subcooled liquid and a more nearly plane geometry. 

Film pressure as a function of time is depicted in 
Fig. 3. There the predicted t-l’* decay and slowly 
decreasing frequency of oscillation is apparent at large 
times. 

FIG. 3. Dimensionless pressure vs dimensionless time. 

*; 6OO 

4. Dimensionless vapor per unit vs dimen- 
sionless time. 

of vaporized per unit is displayed 
in Fig. 4. are interesting deviations 

it still can be said 
m2 varies linearly is contrast 

to behavior of vapor in Fig. 5. 
as many experimental 

of film thickness to determine growth 
constants, it clear be 
incurred if in the square of film 

5. Dimensionless vs dimensionless time. 

thickness is assumed without consideration of possible 
pressure excursions. the assumption of an in- 

compressible vapor a constant pressure is seen to 

be substantially in in some important 
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